
ROBOCUP JUNIOR
VICTORIA

Programming the EV3
• Mindstorms (traditional)

ROBOT
PROGRAMMING
What are the programming challenges and
how are they best approached?

Rescue Robot Programming
• Rule #1 – Construction impacts programming
• Rule #2 – Programming impacts construction

• Most Rescue robots have been programmed using the Lego
Mindstorms graphical programming languages for NXT or EV3

• These provide all the functionality you need to produce quality
Rescue robot programs.

• Simplicity is the key to successful programming, especially for
beginners. If it looks more complicated than necessary, it
probably is.

Introduction to the coding interface

Content editor
● Open by default when

program launches
● Keep notes of progress
● Upload videos, images

Introduction to the coding interface

Programmable brick status (if computer connected to brick)
● Brick name
● Battery level indicator
● Firmware version
● Connection Type(USB/Bluetooth)

Introduction to the coding interface

Port view (if connected)
● Position of all connected inputs and outputs
● Readings from each port

(these values can also be read directly from the brick)

Introduction to the coding interface

Palettes of programming blocks
● Green – Action
● Orange - Flow Control
● Yellow - Sensor

● Red - Data Operations
● Blue - Advanced

Introduction to the coding interface

Action - outputs
● Medium Motor
● Large Motor
● Move Steering
● Move Tank

● Display
● Sound
● Brick Status Light

Introduction to the coding interface

Flow Control
● Start - required at the start of any code
● Wait – pause the program until…
● Loop – run code forever
● Switch – decide between two conditions

● Loop Interrupt –
breaking out of the
loop

Introduction to the coding interface

Sensors
● Used for measuring values from various sensors
● Useful in conjunction with Data block

Data Operations
● These blocks allow you to do things with data values
● The “briefcase” block is a container for holding the value of a variable
● The “/x” block contains Boolean operators (returns True/False values)
● The “mathematical operators” block allows calculations to be done
● The “dice” block is for generating random numbers

Introduction to the coding interface

Introduction to the coding interface

Advanced
● These are specialised blocks that go beyond what most students are

likely to have time for
● It includes blocks for data logging, communication, etc.

Introduction to the coding interface

My Blocks
● Useful tool for generating your own blocks of code
● Important for breaking up complexity of complex code
● Not essential for EV3 (but it is for more complex codes with NXT)

Example of simple program

Things to note:
• comments should be used to explain code
• no unused coding blocks should be left lying around

Pan
tool Add

comments
tool

Select
objects tool

Getting help

● To get help, select a block then select Help>Show Context
Help.

● A brief description will appear; select More Information for
detailed description.

Getting help

NXT Interface

Different layout, colour
scheme and order, but
mostly the same
functions

Green – Action

Yellow – Sensor

Orange – Flow Control

Dark Orange – Data

Red – Advanced

LINE FOLLOWING
What are the programming challenges and
how are they best approached?

Rescue Robot Programming
Where to start?
All Rescue divisions require the robot to:
• Follow a line
• Locate victim

One light sensor or two?
• Riley Rover Rescue (Victoria only) only needs one
• All other divisions require two

Principles of Line Following

Case 2
While True: # robot on

If sensor sees white:
turn right

If sensor sees NOT white:
turn left

Case 1
While True: # robot on

While sensor sees white:
Turn right

While sensor sees black:
Turn left

What does this look like in code?
Please note: I have not included comments with all example codes. A good
exercise for the students is for them to add comments. It forces them to think
through the code and also helps them to see the important role that
comments play.

Case 1 - No switch

Case 2 -
With switch

Single Sensor

Case 1
While True: # robot on

While sensor sees white:
Turn right

While sensor sees black:
Turn left

Case 2
While True: # robot on

If sensor sees white:
turn right

Else sensor sees NOT white:
turn left

Case 2 -
With switch

I have used reflected light
• What cut-off value should be

used?
• Could this be done using colour?
• Why would you choose one over

the other?
• Does motor power (speed)

matter?
Common pitfalls
• Sensor/motor ports in program don’t

correspond to ports used on robot
• Motors mounted in reverse orientation
 This code may not work for your build

Single Sensor
Case 1 - No switch

Adding a second sensor

Case 2
While True: #robot on

If sensorLeft sees white AND sensor Right sees white:
go straight

If sensorLeft sees white AND sensorRight sees black:
turn right

If sensorLeft sees black AND sensorRight sees white:
turn left

If sensorLeft sees black AND sensorRight sees black:
Will this ever occur??? What should happen???

Case 1
While True: # robot on

While sensorLeft sees black:
Turn left

While sensorRight sees black:
Turn right

What does this look
like in code?

Double sensor – Case 1

I have used the Move Tank block
• Could I have used the Move Steering

block?
• Could the robot look for white instead

of black?

Also consider colour vs reflected light, cut-
off values, motor power

Case 1
While True: # robot on

While sensorLeft sees black:
Turn right

While sensorRight sees black:
Turn left

Double
sensor –
Case 2

At the very bottom of
the code is the black-
black situation
• Does your robot

ever encounter
this? If it does, as
written, this code
will cause the robot
to stop.

• What happens if
the motor block is
removed?

Proportional line follower
• What if I could adjust the amount the robot turns by how

far off the line it is?
• Would this make for a much smoother run along the line?

No correction required Large correction
requiredWhile True: #robot on

Input sensorLeft value
Input sensorRight value
turnValue = (sensorLeft – sensorRight) × correctionFactor
Input turnValue to Move Steering block
if sensorLeft > sensorRight, turnValue > 0 and robot turns right
if sensorLeft < sensorRight, turnValue < 0 and robot turns left

Proportional line follower

No correction required Larger correction
required

2
3

2
3

Example 1
• Both sensors on white
• 60 – 60 = 0
• turnValue = 0
• Robot goes straight

Example 2
• Left sensor on black (10)
• Right sensor on white (60)
• 10 – 60 = -50
• turnValue = -50 × 1.4 = -70
• Robot turns sharp left

Example 3
• Left sensor on edge (50)
• Right sensor on white (60)
• 50 – 60 = -10
• turnValue = -10 × 1.4 = -14
• Robot turns slight left

Note: the “c” value and motor power need to be optimised;
the program works best if light sensors are matched

RESCUING THE VICTIM
What are the programming challenges and
how are they best approached?

Rescue

Riley Rover (Victoria only)
• Push victim completely out of chemical spill
Primary Rescue
• Push victim completely out of chemical spill
• Exit chemical spill and recapture line (new in 2021)
Secondary Rescue
• Control and release victim in an upright position outside the swamp
• Exit chemical spill and recapture line
Open Rescue
• Lift victim onto rescue platform in upright position
• Exit chemical spill and recapture line

Entering chemical spill and detecting
the victim
How can the robot detect chemical spill tile?
• Highly reflective tape at entrance
How can the robot detect the victim?
• For Riley Rover, it doesn’t need to but more efficient if

it does
How can the robot control the victim?
• What level of control is needed for each division?
How can the robot exit the spill and regain the line?
• Not required for Riley Rover

Think through problem – Detecting the
spill tile

Detecting chemical spill
• Does the reflected value for

the foil tape differ from
white?

• Does the tape have a colour
value?

• Are measured values for
reflected light and colour
consistent?

Think through problem – Finding the
victim
Finding victim
• Ultrasonic sensor measures distance from

object
• Where is the best place to position the robot

to begin checking?
• What is the maximum distance the victim

could be from the robot?
• What happens if the sensor is too close to the

victim?
• Is the ultrasonic sensor able to detect curved

surfaces as easily as flat surfaces?
• What if alignment is not perfect?

Transmitter

Receiver

Thinking through problem – Rescuing the
victim
Controlling the victim (secondary)
• Grabber mechanism

• Positive: Can get away with not being perfectly
lined up since grabber will gather victim in

• Negative: Can be bulky and add to length of robot
resulting in course navigation problems

• Cage mechanism
• Positive: Much more compact
• Negative: Need precise alignment

Rescuing the victim
• Push/drag rescue capsule to white and

release
• What happens if the robot has missed or lost

control of the rescue capsule?

Think through problem – Finding exit and
regaining the line

Finding exit (3 options – are there others?)
1. Use single light sensor line follower algorithm

to follow edge of green until reflective tape is
reached
 Where would you position the robot relative to the

edge?
2. Random or systematic “walk” until reflective

tape is detected
3. Record and retrace steps

ADDITIONAL
CHALLENGES
Detecting intersections
Navigating around water tower

Detecting green at intersections

Robots should turn in the direction of the green marker

Detecting green at intersections
NOTE: The green on Rescue challenge mats used in the Victorian
competitions are detected as green by Lego EV3 colour sensors.
This is not necessarily the case for all Rescue mats and may not be
true if sensors change. There is nothing in the rules that specifies
the shade of green.

Thinking through the problem:
• Does the robot turn correctly using a basic line following program?

Always? Most of the time? Rarely? Never?

• Do the colour sensors detect the “green” as “green”?

• What are the reflected light values when over the green squares?
Are they unique individually? As a sum? As a difference? Can you
use any of this to reliably detect green?

Navigating around water tower

• What should be used to detect the
water tower (Ultrasonic? Touch?)?

• It is relatively easy to pre-program a
route around tower, but …
 What happens if robot isn’t

perfectly aligned with water tower?
 How does the robot know when it

has found the line again?
• Must recapture the line on the same

tile to get points

Troubleshooting
Check that:
• Port settings in program match ports on robot
• Correct sensor type is being used in switch/wait/loop blocks
• Actual reflected light/colour readings correspond to values set in program
• Motor power values are reversed in program if motors are in reverse orientation
• Loop exit conditions are set correctly
• Motor “On” conditions are set correctly
• Sounds aren’t affecting program flow

And a few tips
• Program in small increments
• Use the brick status display blocks or sounds to help identify if a particular part of the

program is being executed
• Run the program while the robot is connected to the computer to show which block(s)

are being executed
• Use My Blocks to help organise more complex programs
• Save programs with significant changes as a new version, so stable older

versions are not lost
• On competition days make sure that programs loaded on the brick are functional

programs (don’t leave rubbish programs on the brick that could be run by accident)

	RoboCup Junior Victoria
	Robot programming
	Rescue Robot Programming
	Introduction to the coding interface
	Introduction to the coding interface
	Introduction to the coding interface
	Introduction to the coding interface
	Introduction to the coding interface
	Introduction to the coding interface
	Introduction to the coding interface
	Introduction to the coding interface
	Introduction to the coding interface
	Introduction to the coding interface
	Example of simple program
	Getting help
	Getting help
	NXT Interface
	Line following
	Rescue Robot Programming
	Principles of Line Following
	Single Sensor
	Single Sensor
	Adding a second sensor
	Double sensor – Case 1
	Double sensor – Case 2
	Proportional line follower
	Proportional line follower
	Rescuing the victim
	Rescue
	Entering chemical spill and detecting the victim
	Think through problem – Detecting the spill tile
	Think through problem – Finding the victim
	Thinking through problem – Rescuing the victim
	Think through problem – Finding exit and regaining the line
	Additional challenges
	Detecting green at intersections
	Detecting green at intersections
	Navigating around water tower
	Troubleshooting

