
ROBOCUP JUNIOR
VICTORIA

Programming the EV3
EV3 Classroom app

(Scratch-based)

ROBOT PROGRAMMING
What are the programming challenges and how are they best
approached?

Rescue Robot Programming
• Rule #1 – Construction impacts programming
• Rule #2 – Programming impacts construction

• Most Rescue robots are programmed using Lego Mindstorms graphical
programming languages for EV3

• Simplicity is the key to successful programming, especially for beginners. If it
looks more complicated than necessary, it probably is.

Introduction to the coding interface (EV3 Classroom)
Opening a new project

GO TO HOME
● Tutorials
● Teaching unit plans
● Links to your recent projects

NEW PROJECT
● Open a new coding window

Introduction to the coding interface
Getting familiar with the “programming canvas”

Help
• Select “Settings” from the dropdown menu
Quick view of port connections
• For details click on the brick icon to open

the “Dashboard”

Introduction to the coding interface
Dashboard (if connected)
● Battery level indicator
● Position of all connected inputs

and outputs
● Readings from each port

o What is viewed can be set
using the dropdown menu

Values can also be read directly on
the brick

Introduction to the coding interface

Palette of programming
blocks
• Details about each

programming block can be
found under “Help”

Action - Motor control

Outputs – Sound and display

Flow control – Program control elements

Sensors – Inputs

Operators – Mathematics and comparisons

Variables – data containers

Functions – collecting blocks of code

Example of simple program Things to note:
• All blocks are ‘drag and drop’
• Encourage students to add

comments to explain code (the
comments are a bit overdone in
this example)

• Encourage students to clean up
the programming canvas

• When ready to download code to
robot, use the “Download” icon if
connected via USB cable

Getting help

● “Help” isn’t as extensive
as it was in the previous
version of EV3
Mindstorms

● “Help” includes short
descriptions of each
coding block and how to
use them

LINE FOLLOWING
What are the programming challenges and how are they best
approached?

Rescue Robot Programming
Where to start?
All Rescue divisions require the robot to:
• Follow a line
• Locate victim

One light sensor or two?
• Riley Rover Rescue only needs one
• All other divisions require two

Principles of Line Following

Case 2
While True: # robot on

While sensor sees white:
Turn right

While sensor sees black:
Turn left

Case 1
While True: # robot on

If sensor sees white:
turn right

If sensor sees NOT white:
turn left

What does this look like in code?
Please note: I have not included comments with all example codes. A good exercise for the
students is for them to add comments. It forces them to think through the code and also
helps them to see the important role that comments play.

Single Sensor

Case 2
While True: # robot on

While sensor sees white:
Turn right

While sensor sees black:
Turn left

Case 1
While True: # robot on

If sensor sees white:
Turn right

Else:
Turn left

I have used reflected light
• How do you decide what to set the reflected

light intensity to?
• Could this be done using colour instead of

reflected light?
• Why would you choose one over the other?
• Do motor speed settings matter?

Common pitfalls
• Sensor/motor ports in program don’t

correspond to ports used on robot
• Motors mounted in reverse orientation
 NOTE: This code may not work for your

build and your light conditions

Ports B and C are the default motor ports. If
they are used, the “set movement motors”
block is not required but it is good practice so
it is not forgotten if different ports are used.
 Students will use different ports!

Single Sensor

Adding a second sensor

Case 2
While True: #robot on

If sensorLeft sees white AND sensor Right sees white:
go straight

If sensorLeft sees white AND sensorRight sees black:
turn right

If sensorLeft sees black AND sensorRight sees white:
turn left

If sensorLeft sees black AND sensorRight sees black:
Will this ever occur??? What should happen???

Case 1
While True: # robot on

While sensorLeft sees black:
Turn left

While sensorRight sees black:
Turn right

What does this look
like in code?

Double sensor – Case 1

I have used the “start moving at”
block
• Could I have used the “start moving

with steering” block?

Could the robot look for white instead
of black?

Also consider colour vs reflected light, cut-
off values, motor speed settings

Case 1
While True: # robot on

While sensorLeft sees black:
Turn right

While sensorRight sees black:
Turn left

Double sensor – Case 2 At the very bottom of
the code is the “black-
black” situation
• Does your robot

ever encounter this?
• Could this be used

to detect green?
• What if a sensor

value equals 20?
• Note the use of the

display block to flag
when the “else”
situation occurs.

• Could you use the
“stop moving” block
to check the actual
sensor values at the
moment it occurs?

Proportional line follower
• What if I could adjust the amount the robot turns by how

far off the line it is?
• Would this make for a much smoother run along the line?

No correction required Large correction
requiredWhile True: #robot on

Input sensorLeft value
Input sensorRight value
turnValue = (sensorLeft – sensorRight) × correctionFactor
Input turnValue to Move Steering block
if sensorLeft > sensorRight, turnValue > 0 and robot turns right
if sensorLeft < sensorRight, turnValue < 0 and robot turns left

Proportional line follower

3
2
3

No correction
• Both sensors on white
• 40 – 40 = 0
• turnValue = 0
• Robot goes straight

Small correction
• Right sensor on edge (35)
• Left sensor on white (40)
• 35 – 40 = -5
• turnValue = -5 × 1.8 = -9
• Robot turns slight right

Large correction
• Right sensor on white (40)
• Left sensor on black (20)
• 40 – 20 = 20
• turnValue = 20 × 1.8 = 36
• Robot turns hard left

No correction
required

Larger correction
required

Small correction
required

RESCUING THE VICTIM
What are the programming challenges and how are they best
approached?

Rescue
Riley Rover (Victoria only)
• Push victim completely out of chemical spill
Primary Rescue
• Push victim completely out of chemical spill
• Exit chemical spill and recapture line (new in 2021)
Secondary Rescue
• Control and release victim in an upright position outside the swamp
• Exit chemical spill and recapture line
Open Rescue
• Lift victim onto rescue platform in upright position
• Exit chemical spill and recapture line

Entering chemical spill and detecting the victim

How can the robot detect chemical spill tile?
• Highly reflective tape at entrance

How can the robot detect the victim?
• For Riley Rover, it doesn’t need to but more efficient if it does

How can the robot control the victim?
• What level of control is needed for each division?

How can the robot exit the spill and regain the
line?
• Not required for Riley Rover

Think through problem – Detecting the spill tile
Detecting chemical spill
• Does the reflected value for the foil tape

differ from white?
• Does the tape have a colour value?
• Are measured values for reflected light

and colour consistent?

Think through problem – Finding the victim
Finding victim
• Ultrasonic sensor measures distance from object
• Where is the best place to position the robot to

begin checking?
• What is the maximum distance the victim could be

from the robot?
• What happens if the sensor is too close to the

victim?
• Is the ultrasonic sensor able to detect curved

surfaces as easily as flat surfaces?
• What if alignment is not perfect?

Transmitter

Receiver

Thinking through problem – Rescuing the victim
Controlling the victim (secondary)
• Grabber mechanism

• Positive: Can get away with not being perfectly lined
up since grabber will gather victim in

• Negative: Can be bulky and add to length of robot
resulting in course navigation problems

• Cage mechanism
• Positive: Much more compact
• Negative: Need precise alignment

Rescuing the victim
• Push/drag rescue capsule to white and release
• What happens if the robot has missed or lost

control of the rescue capsule?

Think through problem – Finding exit and
regaining the line

Finding exit (3 options – are there others?)
1. Use single light sensor line follower algorithm to follow edge of

green until reflective tape is reached
 Where would you position the robot relative to the edge?

2. Random or systematic “walk” until reflective tape is detected
3. Record and retrace steps

ADDITIONAL CHALLENGES
Detecting intersections
Navigating around water tower

Detecting green at intersections
Robots should turn in the direction of the green marker

Detecting green at intersections
NOTE: The green on Rescue challenge mats used in the Victorian
competitions are detected as green by Lego EV3 colour sensors.
This is not necessarily the case for all Rescue mats and may not be
true if sensors change. There is nothing in the national rules that
specifies the shade of green.
Thinking through the problem:
• Does the robot turn correctly using a basic line following program?

Always? Most of the time? Rarely? Never?
• Do the colour sensors detect the “green” as “green”?
• What are the reflected light values when over the green squares?

Are they unique individually? As a sum? As a difference? Can you
use any of this to reliably detect green?

Navigating around water tower
• What should be used to detect the water

tower (Ultrasonic? Touch?)?
• It is relatively easy to pre-program a

route around tower, but …
 What happens if robot isn’t perfectly

aligned with water tower?
 How does the robot know when it has

found the line again?
• Must recapture the line on the same tile

to get points

Troubleshooting
Check that:
• Port settings in program match ports on robot
• Movement motors have been defined correctly
• Actual reflected light/colour readings correspond to values set in program
• Motor power values are reversed in program if motors are in reverse orientation
• All conditional statements are set correctly
• Sounds/displays aren’t affecting program flow

And a few tips
• Program in small increments
• Use the brick displays or sounds to help identify if a particular part of the program is being
• Use My Blocks to help organise more complex programs
• Save programs with significant changes as a new version, so stable older versions are not lost
• On competition days make sure that programs loaded on the brick are functional programs (don’t leave

rubbish programs on the brick that could be run by accident)
• Make sure that battery is charged

	RoboCup Junior Victoria
	Robot programming
	Rescue Robot Programming
	Introduction to the coding interface (EV3 Classroom)�Opening a new project
	Introduction to the coding interface�Getting familiar with the “programming canvas”
	Introduction to the coding interface
	Introduction to the coding interface
	Example of simple program
	Getting help
	Line following
	Rescue Robot Programming
	Principles of Line Following
	Single Sensor
	Single Sensor
	Adding a second sensor
	Double sensor – Case 1
	Double sensor – Case 2
	Proportional line follower
	Proportional line follower
	Rescuing the victim
	Rescue
	Entering chemical spill and detecting the victim
	Think through problem – Detecting the spill tile
	Think through problem – Finding the victim
	Thinking through problem – Rescuing the victim
	Think through problem – Finding exit and regaining the line
	Additional challenges
	Detecting green at intersections
	Detecting green at intersections
	Navigating around water tower
	Troubleshooting

